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1.1 Introduction
The field of quantum information science has its roots in the careful reasoning and deep
thought that went into understanding the foundational concepts of quantum theory.
Quantum mechanics is a theory which was invented initially to do a number of “useful”
things – to describe the radiation emitted from thermal bodies, the structure of atoms,
their spectra, scattering probabilities for subatomic particles, and the properties of matter
and radiation. However, already in the 1920s, it raised significant philosphical questions
about the nature of reality and required a reworking of basic conceptual frameworks that
had been used for centuries to understand the world around us. Thought experiments
such like Schrödinger’s cat, the work of Einstein, Podolsky, and Rosen on entanglement in
1935, Bohr’s complementarity principle, and Heisenberg’s microscope thought experiment
were developed initially to either create a philosophical scaffolding, or to form a basis for
criticizing the nascent theory. These concepts now form the basis of fields in quantum
computing, sensing, and communications. It was only in the 1960s and 1970s that some of
the questions raised by these early pioneers began to be addressed in a rigorous manner,
soon giving rise to the field of quantum communication, information, and computing.
The field has come full circle. Today we try to use these philosophical advances in our
understanding of nature, to again do useful things – to build quantum sensors to detect
fields with unprecedented precision and develop enormously capable computers. Before
diving into these new advances however, it is useful and important to remind ourselves
of some of the the truly weird properties of quantum theory. We will also review a few
practical things are important for describing real phenomena.

1.2 What is a quantum state?
Classical probability theory provides a framework to talk about and make calculations of
the likelihood or relative frequency of events. It help us predict outcomes based on what
we know about a system. At the heart of this framework is the probability distribution
function, which gives us the probabilities of different outcomes of measurements on a
given system. For instance, consider the probability distribution function:

p(x1, . . . , xN) = Pr[X1 = x1, · · · , XN = xN ], (1.1)

This function encodes the likelihood that, upon measurement, the random variables
X1, · · · , XN yield the results x1, · · · , xN . We can use this to predict potential outcomes of
measurements. However, it’s essential to remember that while the probability distribution
offers probabilities for various outcomes, it doesn’t usually precisely predict a specific
outcome — for instance, it doesn’t indicate if X1 will measure as 1.5 or 2.2 – it only offers
the likelihood for either result.

� Example 1.1 Heads or tails (Bernoulli trials)
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We define an experiment as such: we have an unbiased coin that we toss into the air, it
lands, and we check whether it is heads (H) or tails (T). We do this experiment N times,
insuring that the trials are independent, resulting in a vector (x1, x2, · · · , xN) where each
xk is either H or T. The probability distribution

p(x1, x2, · · · , xN)

fully characterizes the result of any measurement. Convince yourself that p(x1, x2, · · · , xN) =
2−N . �

In quantum mechanics, the theory’s mathematical formulation enables us to calculate the
probability distribution functions p(x1, . . . , xN) for any measurement.

The first element of this mathematical formulation is the Hilbert space (H), a complex
vector space. The main objects we use in the theory are either vectors in this Hilbert space
or operators acting on the Hilbert space. The observables (Ô) which are operators acting
on the Hilbert space, can correspond to variables in classical physics (energy, momentum,
position) or represent the question we are asking of the system (e.g., “what is your spin?”,
“where are you?”, “Is the voltage 1.5 V?”, etc.). The state (ρ̂) is another operator which
encodes all of our knowledge of the state of the system. Pure states, a category among them, are
also indicated by a state vector |ψ〉 with the corresponding state or density matrix being
ρ̂ = |ψ〉〈ψ|. All states, including pure states, can be represented via the density matrix.
Remarkably, even given as complete knowledge as possible in quantum mechanics, the
exact result of a specific measurement may still elude prediction.

This is already a significant departure from the classical, mechanistic understanding of the
world. For example, while knowing a coin’s 50% probability for heads doesn’t predict
a specific flip’s result, theoretically, with sufficient understanding and modeling of the
coin’s physics within a classical theory, one could predict the outcome of a single coin
toss. This is perhaps best captured in Laplace’s famous claim “Give me the positions and
velocities of all the particles in the universe, and I will predict the future”. Randomness in
classical theories only arises from our limited knowledge or incomplete information of
initial conditions and interactions. In contrast, quantum mechanics introduces a different
kind of randomness that persists despite complete knowledge of the state and dynamics.

1.2.1 Combining states and observables
We combine states and observables to make predictions in quantum theory. These
predictions are in the form of probabilities or probability distribution functions. The
way the two operators, observable and state, are combined is through the trace operation.

First we introduce the trace operation:

Definition 1.1 — Trace. The trace of a matrix A is the sum of its diagonal elements.
Mathematically, for an n× n matrix A, the trace is given by:

Tr(A) =
n

∑
i=1

Aii

In the context of quantum mechanics, the trace of an operator Â in a Hilbert space with
an orthonormal basis {|φi〉} is given by:

Tr[Â] = ∑
i
〈φi|Â|φi〉,
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where the sum runs over all basis vectors in the Hilbert space.

For operators with continuous spectrum,

Tr[Â] =

ˆ
dx〈x|Â|x〉.

Theorem 1.1 — Cyclic property of trace. For any two operators Â and B̂:

Tr[ÂB̂] = Tr[B̂Â]

This property implies that the trace remains invariant under cyclic permutations of the
matrices inside the trace.

Proof. Using the orthonormal basis {|φi〉}, we can express the trace of the product of two
operators as:

Tr[ÂB̂] = ∑
i
〈φi|ÂB̂|φi〉

Expanding the identity operator the same basis orthonormal basis, we have:

1̂ = ∑
j
|φj〉〈φj|

Inserting this into our expression for the trace, we get:

Tr[ÂB̂] = ∑
i

∑
j
〈φi|Â|φj〉〈φj|B̂|φi〉

Since 〈φi|Â|φj〉 and 〈φj|B̂|φi〉 are just numbers, we rearrange them to prove the cyclic
property of the trace:

Tr[ÂB̂] = ∑
i

∑
j
〈φj|B̂|φi〉〈φi|Â|φj〉 = ∑

j
〈φj|B̂Â|φj〉 = Tr[B̂Â].

�

Quantum mechanics provides a framework for calculating the probabilities of different
measurement outcomes and expected values of observables. Let’s consider an observable
Ô. All observables are represented by Hermitian operators. By the spectral theorem, we
can express any Hermitian operator as a sum of projectors:

Ô = ∑
k

ok|ok〉〈ok|

where ok are real eigenvalues (possible measurement outcomes) and |ok〉 are the corresponding
eigenstates forming an orthonormal basis.

For each eigenvalue ok, the corresponding projection operator

Êk ≡ |ok〉〈ok|
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allows us to calculate the probability of a particular measurement outcome ok when the
system is in state ρ̂:

p(Ô = ok) = Tr[ρ̂Êk] = 〈ok|ρ̂|ok〉.

The expected value of the observable Ô is then given by the weighted average of all
possible outcomes:

〈Ô〉 = ∑
k

ok p(Ô = ok)

= ∑
k

ok〈ok|ρ̂|ok〉

= Tr[ρ̂ ∑
k

ok|ok〉〈ok|]

= Tr[Ôρ̂]

This last expression provides a general formula for calculating the expected value of any
observable Ô when the system is in state ρ̂.

� Example 1.2 The position operator

Given a particle in one dimension, we consider the operator X̂ representing its position.
Since the outcome of measuring the position of the particle is a real number x ∈R[−∞,∞],
we associate with each of these possible positions a distinct and orthogonal eigenvector
|x〉, so

X̂ =

ˆ ∞

−∞
x|x〉〈x| dx.

�

Exercise 1.1 — Projection Operators as Observables. Consider a projection operator
P̂ = |ψ〉〈ψ|, where |ψ〉 is a normalized state vector.

1. Show that P̂ is Hermitian.
2. Find the eigenvalues and eigenvectors of P̂.
3. If we consider P̂ as an observable, what are the possible measurement outcomes

and their corresponding probabilities when measuring a system in state |φ〉?
4. Given an arbitrary state |φ〉 = α|ψ〉+ β|ψ⊥〉, where |ψ⊥〉 is orthogonal to |ψ〉 and
|α|2 + |β|2 = 1, calculate the expectation value 〈P̂〉.

5. Express the variance of this observable, Var(P̂) = 〈P̂2〉 − 〈P̂〉2, in terms of |α|2.

�

We can summarize these properties of the density matrix and their physical interpretation:

1. Unit trace: Tr[ρ̂] = 1
• This is a statement about probabilities. If we have an orthonormal basis {|αk〉},

then pk = 〈αk|ρ̂|αk〉 is the probability of being in state k. The sum ∑k pk = 1, is
exactly the trace. (probabilities add up to 1)

2. The density matrix is Hermitian and positive.
• ρ̂† = ρ̂. (probabilities are real)
• 〈ψ|ρ̂|ψ〉 ≥ 0 for all vectors |ψ〉. (probabilities are positive)
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Some (but not all) density matrices can be expressed as ρ̂ = |ψ〉〈ψ|. The vector |ψ〉 is
called a state vector and ρ̂ is a pure state. A state that is not pure is called a mixed state. For
example, we may not know whether a system is in a pure state |ψ1〉 or |ψ2〉, but can assign
probabilities p1 and p2 for these two different possibilities. The state of system would then
be the linear combination ρ̂ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|.

1. Conservation of trace over unitary evolution: ρ̂(t) = Û(t)ρ̂0Û†(t), then using cyclic
property of trace we have that Tr[ρ̂(t)] = Tr[Û(t)ρ̂0Û†(t)] = Tr[Û†(t)Û(t)ρ̂0] = Tr[ρ̂0].
(probabilities add up to 1 for all time)

2. Purity: We define the purity P = Tr[ρ̂2]. P = 1 if and only if ρ̂ is a pure state (ρ̂ =
|ψ〉〈ψ|). proof:

• ρ̂ = |ψ〉〈ψ| implies Tr[ρ̂2] = 1 trivially.
• Assume Tr[ρ̂2] = 1. Since Tr[ρ̂] = 1 and all eigenvalues pk of ρ̂ are greater than 0

and less than 1 (property 1 and 2), for both ∑k pk = 1 and ∑k p2
k = 1, we require

that pk′ = 1 for some k′ and zero otherwise, so ρ̂ is a pure state.
3. Convex combinations of density matrices are also density matrices.

• If {ρ̂s} are density matrices, then ρ̂ = ∑s psρ̂s is also a valid density matrix if
ps ≥ 0 and ∑s ps = 1.

Exercise 1.2 — States prepared using different procedures.

1. You’re handed two boxes (1) and (2), (1) emits photons with polarization |H〉 or
|V〉randomly and with equal probability. (2) emits photons with polarization |+〉
or |−〉 (where|±〉 = (|H〉 ± |V〉)/

√
2) randomly and with equal probability.

a. What are the density matrices ρ̂1 and ρ̂2 representing the state of the photon

in the basis with vector representation |H〉 =
(

1
0

)
and |V〉 =

(
0
1

)
.

b. Can you think of an experiment to distinguish between the two boxes?
2. (Tricky) Someone has made a box that emits photons with polarization |H〉 with

pH = 0.99 and |V〉 with pV = 0.01. Design a box that emits photons in state |ψ〉1
or |ψ〉2 randomly and with equal probability, and that is indistinguishable from
the original box. What are |x〉 and |y〉, expressed in the original basis?

�

1.2.2 Measurements
We will study measurements in quantum mechanics in significantly greater detail in
later chapters. For now we will just consider projective measurements and how this
formalism allows us to use the state and an observable to find the probability distribution
for measurement result.

Definition 1.2 — Projective Measurements. Projective Measurements

A measuring apparatus gives us a measurement result s, and changes the state of the
system. In a projective measurement, we characterize the measurement with set of
projection operators {Ês}, with the following properties: (1) Ês = Ê†

s , (2) ∑s Ês = 1, (3)
ÊsÊs′ = Êsδss′ .

Measurement is the processes by which a state vector |ψ〉 is transformed:

|ψ〉 −→︸︷︷︸
measurement

{
|ψs〉 = Ês|ψ〉√

〈ψ|Ês|ψ〉
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with the probability of obtaining measurement result s leading to a final state |ψs〉 given
by ps = 〈ψ|Ês|ψ〉. Extending this definition to density matrices, we have:

ρ̂ −→︸︷︷︸
measurement

{
ρ̂s =

Ês ρ̂ Ê†
s

ps

with probability ps = Tr[Êsρ̂].

� Example 1.3 Measuring position

Consider the harmonic oscillator with Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2.

The position operator has a real continuous spectrum of eigenvalues x ∈R[−∞,∞]. We
assume we have a detector that tells us whether the particle is inside a bin (xs, xs + ∆x] ⊂
R[−∞,∞] for xs = s∆x, for every integer s. The associated measurement operator is
Ês =

´ xs+∆x
xs

dx′|x′〉〈x′|. Verify that the set of operators {Ês} form a valid set of operators
defining a projective measurement. Experimentally, such a system would be realized
were we have a detector that takes a state, and gives us a number s, corresponding to the
position of the operator. The probability of measuring s signifying that the particle has a
position of xs < x ≤ xs + ∆x is given by

ps = Tr[Êsρ̂].

�

1.3 Composite Systems and Entanglement
Let’s say we have two systems, system A and system B. We have a way of describing
these two systems, including their Hilbert spaces, operators, and other relevant quantum
mechanical properties. We should also have a way of describing both systems at once as a
single larger composite or bipartite system.

For example, if the first system is in state |αi〉 and the second one is in state |β j〉, then the
joint state of the composite system is |αi〉 ⊗ |β j〉, which we usually write more compactly
as just |αi〉|β j〉. This new vector is obtained by performing the tensor product operation.
It’s a vector that lives in a larger tensor product Hilbert space, which combines the
Hilbert spaces of the individual systems. If the states |αi〉 and |β j〉 form orthonormal
bases for the NA- and NB-dimensional Hilbert spaces of system A and B, then |αi〉|β j〉
forms an orthonormal basis for the the new tensor product spaceHtot =HA ⊗HB, which
consequently is of dimension NA × NB.

Since in quantum mechanics, any linear combination of these joint states is also a valid
state, pure states of the bipartite will in general take the form:

|Ψ〉 = ∑
i,j

cij|αi〉|β j〉 ∈ Htot

where cij are complex coefficients.

1.3.1 Density Matrix as the Partial Trace of a Pure State
Consider a composite system, composed of two subsystems A and B, with a state

|Ψ〉 = ∑
ij

cij|αi〉|β j〉 (1.2)
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Here, {|αi〉} and {|βi〉} represent orthonormal bases for systems A and B respectively.
Generally, observables or operators in this joint system influence both subsystems. However,
suppose we only have experimental access to observables that act on system A. This
situation might arise when system B is physically distant from A, or in scenarios where
one system’s properties are manipulated using another. For example we may be using an
optical field described by system A to make measurements on or modify the mechanical
position or spin described by B. In such cases, we deal with operators of the form ÔA ⊗ 1̂B
– operators that solely influence system A and whose expectation values are independent
of system B’s state. The expected value of these observables can be written as:

〈Ψ|ÔA ⊗ 1̂B|Ψ〉 = ∑
ij

∑
i′ j′

c∗ijci′ j′〈αi|ÔA|αi′〉〈β j|β j′〉

= ∑
ij

∑
i′

c∗ijci′ j〈αi|ÔA|αi′〉

= ∑
ii′

(
∑

j
c∗ijci′ j

)
〈αi|ÔA|αi′〉 (1.3)

Assuming no knowledge about system B, let’s say we aim to determine the expected
value of a local operator ÔA, given the state of system A. We represent the system’s state
through a density matrix, ρ̂A. The observable’s expectation can be calculated as:

Tr[ρ̂AÔA] = ∑
i′
〈αi′ |ρ̂AÔA|αi′〉 = ∑

ii′
〈αi′ |ρ̂A|αi〉〈αi|ÔA|αi′〉 (1.4)

On comparing equations (1.3) and (1.4), we observe that as long as we restrict ourselves to
observables acting only on system A, the measurement outcome is adequately represented
if we assume system A is in state ρ̂A = ∑ii′ ∑k c∗ikci′k|αi′〉〈αi|.

The composite system’s state is given by

ρ̂ = |Ψ〉〈Ψ|
= ∑

ij
∑
i′ j′

c∗ijci′ j′ |αi′〉|β j′〉〈αi|〈β j|

We find that the operation ∑k〈βk|ρ̂|βk〉 = ∑ii′ ∑k c∗ikci′k|αi′〉〈αi| provides us with ρ̂A. This
operation, ∑k〈βk|ρ̂|βk〉, is known as a partial trace and is denoted as TrB[ρ̂]. Thus, the
state of the subsystem can be represented as

ρ̂A = ∑
j
〈β j|ρ̂|β j〉 ≡ TrB[ρ̂]. (1.5)

Let’s make things more concrete with a specific quantum system: a two-qubit system.

Exercise 1.3 — Two-Qubit System and Joint Measurement. Consider a two-qubit system,
Q1 and Q2, which is prepared in the Bell state given by

|Ψ〉 = 1√
2
(|00〉+ |11〉) (1.6)

Here, |00〉 and |11〉 are basis states representing both qubits being in state 0 and both
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qubits being in state 1, respectively.

1. Compute the density matrix ρ̂Q1 for the first qubit Q1.
2. Suppose we want to measure the z-component of the spin (also known as the Pauli-Z
operator) of the first qubit, represented by the observable Ẑ. The Pauli-Z operator can
be represented in the computational basis as:

Ẑ =

(
1 0
0 −1

)
(1.7)

Calculate the expected value of this measurement.
3. Now, consider a joint measurement on both qubits using the Pauli-ZZ operator,
defined as the tensor product of the Pauli-Z operators acting on the two subsystems.
Calculate the expected value of this joint measurement. �

1.3.2 Entanglement
Entanglement is one of the most radical notions in quantum mechanics.

Definition 1.3 — Entangled States. An entangled pure state is a state of a system that
cannot be written as a product state:

|Ψ〉 6= |α〉|β〉.

Similarly, an entangled mixed state is a state that cannot be expressed as a statistical
(convex) mixture of product states

ρ̂ 6= ∑
k

pkρ̂A,k ⊗ ρ̂B,k.

Entangled states have counter-intuitive properties. Why is entanglement such a radical
notion? For an entangled state, even if the state |Ψ〉 of the joint system is known perfectly,
the reduced density matrix ρ̂A describing a subsystem will be mixed. Loosely speaking,
even if we know perfectly the state of the two systems taken together, we may still know
very little about the state of each subsystem taken separately.

1.3.3 Bell’s Theorem
1.3.3.1 Background

Quantum mechanics is a statistical theory and has an irreducible randomness. Repeated
measurements on identical quantum states can give different outcomes. Quantum theory
only gives us the relevant probability distributions. This raises the question: does quantum
mechanics emerge from some deeper theory with additional "hidden variables" that
determine the outcomes of experiments? Is there some more fundamental theory from
which quantum mechanics emerges, in analogy to how statistical physics emerges from
an underlying deterministic set of classical theories? Theories postulating an underlying
theory (with “hidden variables”) have been proposed to provide a more fundamental
explanation.

Exercise 1.4 — EPR State. In this exercise we go over some states and their properties
which are useful for understanding EPR’s argument and Bell’s inequality.

1. Consider two entangled particles 1 and 2 in the EPR state where their relative
position and total momentum are precisely correlated:
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X̂1 + X̂2 = 0 and P̂1 − P̂2 = 0
a. Show that [X̂1 + X̂2, P̂1 − P̂2] = 0, confirming that this is a valid quantum

state.
b. If particle 1’s position is measured to be x, what can you conclude about

particle 2’s position? What about their momenta if particle 1’s momentum is
measured instead?

2. Write the (unnormalized) wavefunction for the EPR state. (Hint: A state with the
particle 1 at position x1 and particle 2 at position x2 is given by |Ψ〉 = |X̂1 = x1〉|X̂2 =
x2〉.)

�

An influential argument challenging the completeness of quantum mechanics was presented
by Einstein, Podolsky, and Rosen (EPR) in 1935. EPR argued that quantum mechanics faces
a dilemma: either it is “incomplete” or it violates locality (the principle that distant objects
cannot influence each other instantaneously). Here, “incomplete” means that quantum
mechanics fails to account for all “elements of physical reality”. The argument considers
two particles in an entangled state where their relative position and total momentum are
precisely correlated, such that X̂1 + X̂2 = 0 and P̂1 − P̂2 = 0. This is a state that’s allowed
by quantum physics since the operators X̂1 + X̂2 and P̂1 − P̂2 commute and therefore their
simultaneous eigenstate with eigenvalues 0 for both is a valid state. It is now known as an
EPR state. After the particles separate, the observer at one end has the choice of measuring
either X̂1, or P̂1 of particle 1. Let’s assume that they decide to measure X̂1. Whatever
the result of the measurement of X̂1, we immediate know precisely what value of a X̂2
measurement would be if the second observer were to measure it. Assuming there are
nonlocal effects allowed between the two particles, i.e., no so-called “Spooky Action at
a Distance”, this means that position of the second particle, X̂2, is fully determined and
is thus an “element of physical reality.”1 On the other hand, the observer at position 1
could just as well have decided to measure momentum instead, and so we can apply the
same argument to P̂2: it to has a certain value and is an element of reality. But this calls
into question one of the fundamental precepts of quantum mechanics which states that
noncommuting observable can not be assigned values simultaneously with certainty. It
also contradicts the view that the quantum state provides a complete description of a
physical system, as it cannot simultaneously represent definite values for both position
and momentum.

In the wake of the EPR argument, physicists continued to grapple with the completeness
of quantum mechanics. Some physcists, inspired by Einstein’s critique, tried to develop
hidden variable theories that could provide a “complete,” deterministic description of
quantum phenomena. These theories proposed that underlying the quantum world were
hidden variables that, if known, would allow precise predictions of particle behavior. In
1932, John von Neumann claimed to prove that hidden variable theories were generally
mathematically impossible, ostensibly closing the door on this line of inquiry. But then in
1952, David Bohm proposed a hidden variable theory that appeared to work, reproducing
all the predictions of quantum mechanics, clearly showing that von Neumann’s proof
was incorrect.2 Bohm’s theory, while deterministic, was nonlocal, and allowed for
instantaneous influences between distant particles. The natural question then became: is
there “complete” and “local” hidden variable theory?

1EPR state that if we can predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical quantity.

2John von Neumann’s proof was “foolish” according to Bell’s later analysis.
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Figure 1.1: Measurement directions for the CHSH inequality. The vectors eA,1 and eA,2
represent the measurement directions for system A. Vectors eB,1 and eB,2 represent those
for system B. The vectors are arranged in the x-y plane with 45-degree separations.

This is where John Bell’s work came in – he proved that if quantum mechanics is
correct, then there can be no hidden variable theory that is both deterministic and
local. Importantly, Bell’s work showed that the issue was not merely philosophical
but experimentally testable. His theorem demonstrated that any hidden variable theory
satisfying certain reasonable locality conditions must satisfy inequalities, now known as
Bell inequalities, in its predictions for the outcomes of certain experiments. Quantum
mechanics, on the other hand predicts violations of these inequalities. This insight
transformed the landscape of quantum foundations. It shifted the debate from purely
theoretical and philosophical grounds to the realm of experiment. Over the subsequent
decades, a series of increasingly sophisticated experiments were conducted to test these
predictions. While these experiments consistently confirmed the quantum mechanical
predictions, by violating the Bell inequalities, they were subject to certain loopholes that
could allow for alternative explanations. The two most significant were the "locality"
loophole (the possibility that the detector settings could be communicated between the
locations of the two particles) and the "detection" loophole (given inefficient measurements,
there is always the possibility that the detected values were not a fair sample of all the
values). It wasn’t until 2015 that experiments were finally conducted that closed both of
these loopholes simultaneously, providing the most conclusive evidence to date against
local hidden variable theories. Nearly sixty years after the original publication of Bell’s
paper, the 2022 Nobel Prize in Physics was awarded to Alain Aspect, John Clauser, and
Anton Zeilinger for their pioneering experiments in this field.

1.3.3.2 Proving Bell’s Theorem: CHSH Inequality

We consider two separated systems with local observers, Alice (A) and Bob (B). At location
A, we have local observables â1 and â2, while at location B, we have b̂1 and b̂2. Each of
these observables yield a value of ±1.

Let’s assume these observables have pre-assigned values a1, a2, b1, and b2. We collect the
results and calculate C = (a1 + a2)b1 + (a2 − a1)b2. Note that a1 + a2 or a2 − a1 will be 0,
and the other will be ±2. Consequently, C = ±2. If we repeat this measurement multiple
times and average the result, we get−2≤ 〈C〉 ≤ 2, or |〈C〉| ≤ 2. It’s important to recognize
that there’s an assumption of hidden variable theory present in this reasoning, since we
assumed that that all of the variables have some definite values.

Now, let’s calculate the expected value of C for a specific quantum mechanical setting. We



1.3 Composite Systems and Entanglement 13

assume that the observables are the spin along certain axes ej,k where j = A, B, and k = 1,2.
Thus, âk = σ̂A · eA,k and b̂k = σ̂B · eB,k. We also assume that the two spins at locations A
and B are in an entangled state |Ψ−〉 = 2−1/2(|01〉 − |10〉).

Exercise 1.5 Show that 〈Ψ−|σ̂iσ̂j|Ψ−〉 = −δij. Use this to demonstrate that 〈Ψ−|(σ̂A ·
eA)(σ̂B · eB)|Ψ−〉 = −eA · eB. �

We choose the vectors for the observables â1, â2, b̂1, b̂2 as follows (see Figure 1.1): eA,1 is
along the x-axis, eB,1 is rotated by 45 degrees, eA,2 by 90 degrees, and eB,2 by 135 degrees
about the z-axis. Evaluating C, we find:

C = 〈â1b̂1〉+ 〈â2b̂1〉+ 〈â2b̂2〉 − 〈â1b̂2〉
= −eA,1 · eB,1 − eA,2 · eB,1 − eA,2 · eB,2 + eA,1 · eB,2

= − 1√
2
− 1√

2
− 1√

2
− 1√

2
= 2
√

2.

This result violates the inequality |〈C〉| ≤ 2 derived under the hidden variable assumption,
demonstrating Bell’s theorem.

1.3.4 Schmidt Decomposition
An entangled state |Ψ〉 can’t be expressed as |α〉|β〉. The closest we can come to this form
is called the Schmidt decomposition. We can express

|Ψ〉 =
min(NA,NB)

∑
k=1

√
λk|αk〉|βk〉,

with {|αk〉}, and {|βk〉} with {0 ≤ λk ≤ 1} forming orthonormal sets of vectors in their
respective Hilbert spaces. This decomposition is pretty remarkable. Remember that in
general, the vector |Ψ〉 is expressed as |Ψ〉= ∑ij cij|αi〉|β j〉 and so NA × NB coefficients are
required in an arbitrary basis. The Schmidt decomposition tells us that there is a basis
within which only need min(NA, NB) coefficients. In fact the actual number of coefficients
we need depends on how much entanglement there is. For separable states, the best basis
is the one where |Ψ〉 is obviously a product state |α1〉|β1〉 and so only single coefficient,
λ1 = 1, is needed. The Schmidt decomposition effectively cuts through the chase and
gives us a representation of the system that is commensurate to how much entanglement
there really is in a state. This aspect of the Schmidt decomposition makes it the key
component of numerical methods (like DMRG) and representation techniques (such as
tensor networks) that have been developed to understand quantum correlated many-body
states.

Theorem 1.2 — Schmidt Decomposition. Schmidt Decomposition

Any state |Ψ〉 ∈ HA ⊗HB can be expressed as

|Ψ〉 =
min(NA,NB)

∑
k=1

√
λk|αk〉|βk〉,

with {|αk〉}, and {|βk〉} with {0≤ λk ≤ 1} forming orthonormal sets of vectors in their
respective Hilbert spaces.

Proof. We start with the density matrix for the full system ρ̂ = |Ψ〉〈Ψ| . We take a
partial trace over subsystem B, so ρ̂A = TrB[ρ̂]. Since this is a valid density matrix for
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the subsystem A , it is also Hermitian, and so can be diagonalized. We call this basis where
the density matrix is diagonal {|αk〉}, and so

ρ̂A = ∑
k

pk|αk〉〈αk|.

In this basis, we can express the original vector as |Ψ〉 = ∑jk cjk|αk〉|bj〉 for some basis |bj〉
for system B. Here we play with the order of summation a little:

|Ψ〉 = ∑
jk

cjk|αk〉|bj〉

= ∑
k
|αk〉

(
∑

j
cjk|bj〉

)

We label these vectors,
√

λk|βk〉, choosing λk so that the |βk〉 are normalized:√
λk|βk〉 = ∑

j
cjk|bj〉.

We’ll show now that these vectors, |βk〉 are also orthonormal, so that choosing the express
the original wavefunction in this basis of the eigenvectors {|αk〉} of ρ̂A has also in sense
“diagonalized” it in the basis for system B. Notice that we can express the partial trace
operation also as:

ρ̂A = TrB

[
∑
kk′

√
λkλk′ |αk〉|βk〉〈αk′ |〈βk′ |

]
= ∑

kk′
TrB

[√
λkλk′ |βk〉〈βk′ |

]
|αk〉〈αk′ |

= ∑
kk′

√
λkλk′〈βk′ |βk〉|αk〉〈αk′ |.

Comparing this expression to the initial ρ̂A = ∑k pk|αk〉〈αk|, and taking inner products
with different |αk〉 on both sides, it is clear that 〈βk′ |βk〉 = δkk′ , and that λk = pk. Since
0≤ pk ≤ 1, we’ve proven the proposition. �

Exercise 1.6 — Entanglement of two qubits. 1. Is the 2-qubit state |Ψ〉= (|00〉+ |01〉+
|10〉+ |11〉)/2 separable? If yes express as a product.

2. Is the 2-qubit state |Ψ〉 = (|00〉+ |01〉+ |10〉 − |11〉)/2 separable? If yes, express
as a product.

3. Is the N-qubit state

|Ψ〉= 2−n/2(|00 . . . 00〉+ |00 . . . 01〉+ |00 . . . 10〉+ |00 . . . 11〉+ · · ·+ |11 . . . 11〉)

separable?
4. We start with a pure state that is separable, i.e. can be written as |Ψ〉 = |α〉|β〉.

Show that:
a. The density matrix ρ̂A is pure.
b. The system now evolves according to a Hamiltonian that doesn’t have any

interaction between A and B, i.e., Ĥ = ĤA + ĤB, where ĤA and ĤB generate
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the evolution of system A and B separately. Show that under this evolution,
the state |Ψ〉 remains separable.

5. Starting with a 2-qubit state (qubit A and B) |Ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2,
we perform a cPHASE gate, which results in a state |Ψ〉 = (|00〉+ |01〉+ |10〉+
eiφ|11〉)/2.

a. Calculate the reduced density matrix ρ̂A in terms of φ.
b. Calculate the purity of the reduced density matrix, Tr[ρ̂2

A].
c. We can quantify entanglement using the purity of the partial trace. Let
E = 1− Tr[ρ̂2

A]. What is the entanglement in as a function of φ?

�





2. Transformations and Pictures

2.1 Continuous Unitary Transformations
Unitary transformations are central in describing the evolution of quantum systems. They
are also a key concept for describing symmetries in physical systems, an important step to
understanding the emergence of various dynamical variables. These transformations can
be intuitively understood as rotations within the Hilbert space. The defining characteristic
of a unitary transformation, represented by Û, is that it preserves inner products. This
means that for any two states |ψ〉 and |φ〉 in the Hilbert space, the inner product before
and after the application of the unitary transformation remains unchanged:

〈ψ|Û†Û|φ〉 = 〈ψ|1̂|φ〉

This implies that Û†Û = 1̂.

Consider unitary transformations that can be parametrized continuously. The parameter
may be time, but can also be something else, for example the rotation angle, a displacement,
or the amount of charge present on an island of a superconductor. Taking s for the
parameter, such a continuously parameterized unitary transformation is given by Û(s)
for each s, such that Û(s) is unitary. Moreover, we require that the transformation is the
multiplicative over the parameter,

Û(s1 + s2) = Û(s1)Û(s2),

and that Û(0) = 1̂. These properties make the family of transformations into a group.

Let’s consider the case of an infinitesmial transformation. For a small change in the
parameter s by δs, the transformation can be expressed as:

Û(s + δs) = Û(s)Û(δs)

For very small δs, the transformation Û(δs) can be approximated as:

Û(δs) = 1̂ +
d
ds

Û(0)δs + O(δs2)

Applying the condition Û†(δs)Û(δs) = 1̂, we find that:

d
ds

Û(0) +
d
ds

Û†(0) = 0

This leads to the conclusion that the derivative d
ds Û(0) is anti-Hermitian, or in other words

equivalent to iK̂, where K̂ is a Hermitian operator. The operator K̂ is called the generator
of the group of transformations Û(s). Since K̂ is Hermitian, it corresponds to a physical
observable. Notice that we obtain a differential equation

d
ds

Û(s) = Û(s)iK̂, (2.1)

resulting in the expression

Û(s) = exp(iK̂s).
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2.1.1 Momentum as the Generator of Displacement
We now apply some of the definitions above to the the single particle in one dimension, to
see how momentum as a dynamical variable arises from considering transformations in
position space.

Definition 2.1 — Translation operator. Consider the particle in one dimension. The
eigenstates of the position operator X̂ were defined to be |x〉 for real numbers x. A
translation in space has the following effect:

Û(a)|x〉 = |x + a〉

We denote the generator of this transformation as −P̂/h̄, so

Û(a) = exp
(
− iP̂

h̄
a
)

We considered above the action of the transformation exp
(
− iP̂a

h̄

)
on states |x〉. But how

does it act on operators? Consider the position operator X̂,

X̂ =

ˆ ∞

−∞
x|x〉〈x|dx

so

Û(a)X̂Û†(a) =
ˆ ∞

−∞
xÛ(a)|x〉〈x|Û†(a)dx =

ˆ ∞

−∞
x|x+ a〉〈x+ a|dx =

ˆ ∞

−∞
(x− a)|x〉〈x|dx,

from which we obtain:

Û(a)X̂Û†(a) = exp
(
− iP̂

h̄
a
)

X̂ exp
(

iP̂
h̄

a
)
= X̂ − a1̂

Exercise 2.1 — Commutation relation between momentum and position. Show that the
above relation implies [X̂, P̂] = ih̄. �

2.1.2 The Hamiltonian as the Generator of Time Evolution
Here we follow a similar logic as above, and consider how the state of a system evolves in
time, changing from |ψ(t0)〉 to |ψ(t1)〉 = |ψ(t0 + t)〉. We modify the notation slightly so

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉.

Then from equation 2.1, we find that

d
dt

Û(t, t0) = −
iĤ
h̄

Û(t, t0), (2.2)

where Ĥ is Hermitian. We find that equation 2.2 leads to

Û(t, t0) = exp
(
−i(t− t0)Ĥ/h̄)

)
.

Note that the above equations hold only for when the Hamiltonian is not changing in time.
We will often be faced with system where the Hamiltonian itself is time dependent, i.e.,
Ĥ(t). Then as we will study later, the differential equation for Û would still hold, but the
solution would need to be modified.
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2.2 Time evolution and pictures
2.2.1 Equations of Motion

The quantum states of a system are transformed by time evolution – this is referred to
as dynamics. In cases where this evolution is deterministic and closed, i.e., we know the
dynamics completely and the components of the system are not interacting with external
degrees of freedom1, then this evolution is described by the unitary operator Û(t, t0), such
that

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉

We can take unitary time evolution to be a fundamental postulate of quantum mechanics.
We call generator of the this unitary operator the Hamiltonian. We obtain Schrödinger’s
equation by taking the time derivative of the |ψ(t)〉 with respect to time. To see this, we
remind ourselves that saying Û(t, t0) is generated by a (time-dependent) Hamiltonian is
simply another way of stating:

d
dt

Û(t, t0) = −
i
h̄

Ĥ(t)Û(t, t0).

Note the slight generalization over the discussion in the last section2 where we have taken
Ĥ(t) to be itself time-dependent – so the Hamiltonian at a certain time t generates the
time evolution at that instance at time t. This generalization means that our original
exp(· · · ) solution no longer holds and we will study the more general solutions to the
above differential equation in chapter ??. For now we see that the above equation implies
Schrödinger’s equation:

ih̄
d
dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉

Time evolution of a density matrix is given by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0),

which leads to Schrödinger’s equation for density matrices:

d
dt

ρ̂(t) = − i
h̄
[Ĥ(t), ρ̂(t)] (2.3)

When connecting the density matrix to experiment, we saw in chapter 1 that the only
connection to experiment comes from expressions of the form

O(t) = Tr[ρ̂(t)Ô]

where Ô is an observable, and ρ̂ is the state. This means that a completely equivalent
theory can be obtained by assuming that ρ̂ is constant in time, and the operator Ô(t)
has the time dependence needed to produce the same O(t). We can easily obtain this
equivalent representation by using the cyclic property of trace:

O(t) = Tr[ρ(t)Ô] = Tr[Û(t, t0)ρ̂(t0)Û†(t, t0)Ô] = Tr[ρ̂(t0)Û†(t, t0)ÔÛ(t, t0)].

1Later we will consider 1) time evolution that is classically stochastic, for example due to fluctuations
in parameters, and 2) open quantum systems where we study the time evolution of a smaller subsystem
interacting with or within a larger quantum system.

2For dynamics that have time-dependent Hamiltonians, the postulate Û(s1 + s2) = Û(s1)Û(s2) is replaced
by Û(t1, t0) = Û(t1, tm)Û(tm, t0).
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In this way, we find an equivalent representation of the theory where the time evolution is
completely in the observables, so ÔH(t) = Û†(t, t0)ÔÛ(t, t0).

Taking the time derivative of ÔH(t), we obtain Heisenberg’s equation3:

d
dt

ÔH(t) =
i
h̄
[Ĥ(t),ÔH(t)] (2.4)

This representation is called the Heisenberg picture, in contrast to the Schrödinger
picture, which we considered by default. These pictures form only two of a family of
many different possible pictures or frames, all of which are related to one other by unitary
transformations as we will see below.

2.2.2 Generalizing pictures
We can further generalize the discussion in the previous section to go beyond the Schrödinger
and Heisenberg pictures. We saw above that the expected value of a time-independent
observable at time t is given by

O(t) = Tr[Û(t, t0)ρ̂(t0)Û†(t, t0)Ô].

Let us now write the time evolution operator as

Û(t, t0) = ÛT(t, t0)ÛI(t, t0). (2.5)

This allows us to write

O(t) = Tr[ÛI(t, t0)ρ̂(t0)Û†
I (t, t0)Û†

T(t, t0)ÔÛT(t, t0)].

This expression shows that we can write our equations in a picture where operators evolve
according a unitary operator ÛT (generated by ĤT(t)), and our states evolve by an operator
ÛI (generated by ĤI(t)).

In other words, we can choose a picture by choosing whatever ĤT(t) we find convenient,
and then calculating ĤI(t) so that eqn. 2.5 is satisfied. The Schrödinger and Heisenberg
pictures are now just special cases, obtained for ĤT = 1̂ and ĤT = Ĥ respectively. Other
pictures can be found by choosing other ĤT(t).

Theorem 2.1 Given the decomposition of the unitary time evolution operator Û(t, t0) =
ÛT(t, t0)ÛI(t, t0), and choosing the generator for the transformation of the operator to
be ĤT(t), we find that generator of the time-evolution for the state ĤI(t) is related the
original and the transformation Hamiltonian as

Ĥ(t) = ĤT(t) + ÛT(t, t0)ĤI(t)Û†
T(t, t0). (2.6)

Exercise 2.2 Prove the above expression. �

� Example 2.1 — Interaction picture. we often split our Hamiltonian into two parts:

Ĥ(t) = Ĥ0(t) + V̂(t)

3Notice that here we have assumed that the operator in the Schrödinger picture has no time-dependence.
If it were to have time dependence, an additional term Û†(t, t0)(dÔ/dt)Û†(t, t0) which is sometimes written
as ∂ÔH/∂t would need to be added on the right side.
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The first part may describe and unperturbed part of the system where the dynamics are
well understood, or have already been solved. The second part denotes interactions that
have been now imposed on the system.

The idea behind the Interaction Picture is to move the well-understood part of the
dynamics onto the operators, such that anytime evolution of the state is only generated by
the interaction part.

As such we choose:

ĤT(t) = Ĥ0(t).

We find then that

ĤI(t) = Û†
T(t, t0)V̂(t)ÛT(t, t0).

�

2.2.3 Why Move to a Different Frame?
We saw in the previous section that the unitary time evolution operator may be applied
to either the states or the observables to obtain the Schrödinger and Heisenberg pictures
respectively. These pictures or frames are equivalent in the sense that they predict the same
physics. Moreoever, these and other equivalent representations can be used for simplifying
the interpretation and solutions of the equations of motion in quantum mechanics. The
question arises: why choose one picture over another? A particularly beneficial feature of
moving to a different frame is that it may make it significantly easier to unmask dynamics
that are of primary interest.

A quintessential example of this advantage emerges when we try to solve equations for a
driven atom or a two-level system. Take, for instance, a system with a ground state |g〉
and an excited state |e〉. These states might have energy levels with a separation of 2 eV or
roughly 500 THz (ωeg ∼ 1015 1/s). By applying an electromagnetic field (i.e.light) at close
to this transition frequency, we induce terms such as Ω|g〉〈e|+ h.c. in the Hamiltonian.
The strength of this interaction, called the Rabi frequency Ω might be significantly smaller
than the transition frequency. For example, a typical value may be on the order of 1 MHz
(Ω ∼ 107 1/s) – more than 8 orders of magnitude smaller.

This disparity causes complications when we attempt to solve the equations numerically
in a naive way by just plugging the equations into numerical integrator:

1. The necessary time-step, δt, required to solve the equation would need to be
considerably smaller than 1/ωo, for example around δt ∼ 10−17 seconds. Then,
roughly 10 billion steps would be needed to accurately capture the dynamics induced
by the term proportional to Ω.

2. In the resulting equations of motion, we would be combining terms proportional
to the various terms in the Hamiltonian, i.e.those proportional to ωo and Ω. On a
digital computer, adding and subtracting small and large numbers often leads to
difficulties. If the computer’s precision in representing these values is inadequate,
the cumulative effects of this imprecision over multiple steps will lead to unreliable
results.

Moving into a rotating frame on the other hand, would allow us to obtain accurate
results with only 10− 100 steps of numerical integration – an 8 to 9 order of magnitude
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improvement over the naive approach. It is clear that even if we are only interested
in solving quantum mechanical equations numerically, finding the correct picture is an
essential step that must be taken with care.

In the following sections, we will study techniques centered around moving between
different frames and representations and obtain some practice. We will see that moving
to a new frame often offers an elegant solution to the challenges outlined above. In
addition to helping us find reliable computational solutions to the equations in question,
moving to a new frame can also improve our understanding of the dynamics, remove
time-dependencies that complicate analytic analysis, and allow us to make approximations
in a controlled fashion.

2.2.4 A Derivation of the Interaction Picture for Time-independent Ĥ0 in terms of
States and Coefficients
In the section 2.2.2, a very general description of pictures beyond Schrödinger and
Heisenberg was provided. For clarity, we consider below the derivation of the Interaction
Picture (given as example 2.1) that is somewhat more explicitly performed at the level of
states and coefficients.

Let us begin by considering a system governed by a time-independent Hamiltonian, Ĥ0.
This Hamiltonian, responsible for the system’s dynamics, can be diagonalized to yield its
eigenstates and eigenenergies {|φk〉, h̄ωk}. As these eigenstates form a complete basis, any
quantum state at a given time t can be expressed as:

|ψ(t)〉S = ∑
k

dk(t)|φk〉,

where dk(t) are time-dependent coefficients and the subscript S indicates that this state is
described in the Schrödinger picture.

We can derive the time evolution of dk(t) by utilizing the Schrödinger equation:

d
dt
|ψ(t)〉S = −

i
h̄

Ĥ0|ψ(t)〉S.

Taking the inner product of both sides with 〈φk|, we find the set of differential equations:

d
dt

dk(t) = −iωkdk(t)⇒ dk(t) = cke−iωkt.

This time evolution of the coefficients is captured by an operator Û0(t) such that |ψ(t)〉S =
Û0(t)|ψ(0)〉S, where

Û0(t) ≡∑
k
|φk〉〈φk|e−iωkt = exp

(
−iĤ0t/h̄

)
.

However, in many cases, our Hamiltonian Ĥ is a combination of a primary part, Ĥ0, and
an additional, possibly time-dependent, interaction part V̂(t). Here, Ĥ0 is diagonal in its
own eigenbasis, making it easier to work with, while V̂(t) may not be.

One common situation is when the dynamics of our quantum system are influenced
by some external interaction, represented by V̂(t). In such cases, we’re interested in
understanding the additional dynamics induced by this interaction term.

To handle this, it’s convenient to describe our system in the eigenbasis of Ĥ0, transforming
the Schrödinger picture to what is known as the Dirac or interaction picture. We relate the
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state vectors in the interaction and Schrödinger pictures, |ψ(t)〉I and |ψ(t)〉S, to each other
by the rotation Û0(t) in Hilbert space:

|ψ(t)〉S = ∑
k

ck(t)e−iωkt|φk〉 = Û0(t)|ψ(t)〉I ⇐⇒ |ψ(t)〉I = ∑
k

ck(t)|φk〉.

When our Hamiltonian is only Ĥ = Ĥ0, we saw above that the amplitude for |φk〉 in
the Schrödinger picture evolve as dk(t) = cke−iωkt. The ck(t) in the equations above are
constants and all of the time evolution of |ψ(t)〉I has been absorbed into its definition, so
that it too remains constant in time.

For a Hamiltonian that includes an interaction term Ĥ = Ĥ0 + V̂(t), ck(t) are time-
dependent coefficients and their time-dependence is due solely to the interaction term
V̂(t).

Theorem 2.2 — Relation between Schrödinger Picture and Interaction Picture. The
transformation between the Schrödinger picture and the interaction picture is mediated
by the operator Û0(t) = exp (−iH0t/h̄). This relationship can be summarized as follows:

Ĥ = Ĥ0 + V̂ ⇐⇒ ĤI(t) = Û†
0 (t)V̂Û0(t),

|ψ(t)〉S = ∑
k

dk(t)|φk〉 ⇐⇒ |ψ(t)〉I = ∑
k

ck(t)|φk〉,

ÔS ⇐⇒ ÔI = Û†
0 (t)ÔSÛ0(t),

where ÔS and ÔI denote any quantum operator in the Schrödinger and interaction
pictures, respectively, and we have defined

|ψ(t)〉S = Û0(t)|ψ(t)〉I, dk(t) = ck(t)e−iωkt.

The interaction picture is particularly helpful when the interaction part of the Hamiltonian
V̂(t) is not diagonal in the eigenbasis of Ĥ0. In such situations, this picture simplifies the
dynamics by isolating the effect of the interaction term.

� Example 2.2 — Two-level System in the Interaction Picture (coefficients). Consider a
two-level quantum system with energies h̄ω0 and 0 respectively. The system’s time-
independent Hamiltonian, Ĥ0, is given by:

Ĥ0 =

(
h̄ω0 0

0 0

)
.

Let’s suppose that this system is driven by a time-dependent field with strength Ω(t). The
interaction Hamiltonian, V̂(t), can then be expressed as:

V̂(t) =
h̄
2

(
0 Ω(t)

Ω(t) 0

)
.

The state of the system in the Schrödinger picture, |ψ(t)〉S, can be written as:

|ψ(t)〉S = d0(t)|φ0〉+ d1(t)|φ1〉,

where d0(t) and d1(t) are time-dependent coefficients.
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The time evolution of these coefficients in the Schrödinger picture is governed by the
Schrödinger equation:

ih̄
d
dt

d0(t) = h̄ω0d0(t) +
h̄Ω(t)

2
d1(t),

ih̄
d
dt

d1(t) =
h̄Ω(t)

2
d0(t).

In the absence of the interaction term V̂(t), the differential equations governing the evolution
of d0(t) and d1(t) simplify to:

ih̄
d
dt

d0(t) = h̄ω0d0(t),

ih̄
d
dt

d1(t) = 0.

These equations can be solved easily:

d0(t) = d0(0)e−iω0t

d1(t) = d1(0).

Now, let’s transform this system into the interaction picture. The state in this picture,
|ψ(t)〉I, can be written as:

|ψ(t)〉I = c0(t)|φ0〉+ c1(t)|φ1〉,

where c0(t) and c1(t) are time-dependent coefficients that represent the probability amplitudes
of the system being in the lower and upper energy level respectively. They are related to
the Schrödinger picture coefficients by

d0(t) = c0(0)e−iω0t

d1(t) = c1(0).

The time evolution of these coefficients in the interaction picture is governed by the
Schrödinger equation:

ih̄
dc0(t)

dt
=

h̄Ω(t)
2

eiω0tc1(t),

ih̄
dc1(t)

dt
=

h̄Ω(t)
2

e−iω0tc0(t).

�

� Example 2.3 — Two-level System in the Interaction Picture (vectors and operators).
Consider a two-level system governed by a time-independent Hamiltonian, Ĥ0 =

h̄ω0
2 (σ̂z +

1̂), and an interaction Hamiltonian V̂(t) = h̄Ω(t)
2 σ̂x, where Ω(t) is a time-dependent driving

field.

The Schrödinger picture wavefunction is |ψ(t)〉S = d0(t)|φ0〉+ d1(t)|φ1〉 = Û0(t)|ψ(0)〉S,
with Û0(t) = exp(−iĤ0t/h̄). In the absence of interaction, its coefficients evolve as d0(t) =
d0(0)e−iω0t and d1(t) = d1(0).

We then transfer to the interaction picture, where the wavefunction is |ψ(t)〉S = Û0(t)|ψ(0)〉I .
The interaction Hamiltonian in this picture becomes V̂I(t) = Û†

0 (t)V̂(t)Û0(t).
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In the Schrödinger picture, the additional Hamiltonian representing the drive is written
in terms of vectors as V̂(t) = h̄Ω(t)

2 (|φ0〉〈φ1| + |φ1〉〈φ0|). Now, transitioning into the
interaction picture, we have to compute the interaction Hamiltonian as V̂I(t) = Û†

0 (t)V̂(t)Û0(t).
This gives us

V̂I(t) =
h̄Ω(t)

2
(eiω0t|φ0〉〈φ1|+ e−iω0t|φ1〉〈φ0|).

This is the interaction picture Hamiltonian which gives us the same differential equations
derived in example 2.2. �

2.2.5 Pictures related by unitary transformations
The Schrödinger and Interaction pictures as defined above are related to one another by
the unitary transformation Û0(t). Other unitary transformation can also be used and
often valuable for the computational and conceptual simplifications that they provide.
It is therefore helpful to to derive the equations of motion and definition of states and
operators for general unitary transformations.

Theorem 2.3 — Relation between Schrödinger Picture and a Frame Defined by a General
Unitary Transformation. The transformation between the Schrödinger picture and a
frame defined by a general unitary transformation is provided by the operator ÛT(t).
This connection is captured in the following equations:

Ĥ(t) ⇐⇒ ĤI(t) = Û†
T(t)Ĥ(t)ÛT(t)− ih̄Û†

T(t)∂tÛT(t),

|ψ(t)〉S ⇐⇒ |ψ(t)〉T = Û†
T(t)|ψ(t)〉S,

ÔS ⇐⇒ ÔT = Û†
T(t)ÔSÛT(t),

where ÔS and ÔT represent any quantum operator in the Schrödinger and transformed
pictures, respectively.

Proof. The proof follows directly from discussion in 2.2.2, but we will provide an alternate
proof here that starts with the Schrödinger equation.

We start with the Schrödinger equation for state evolving under the influence of a possibly
time-dependent Hamiltonian:

ih̄∂t|ψ(t)〉S = Ĥ(t)|ψ(t)〉S.

We denote our general unitary transformation, ÛT(t) (T stands for transformation). This
transformation defines a new frame of reference where hopefully the physics, which is
equivalent to that described in any other frame, is a bit easier to analyze. Acting on
a state in the new basis, the transformation maps every vector in the new frame to its
corresponding Schrödinger picture state:

|ψ(t)〉S ≡ ÛT(t)|ψ(t)〉T.

Using this definition, we can see what the original equation implies:

ih̄∂t|ψ(t)〉S = Ĥ(t)|ψ(t)〉S
⇒ ih̄∂t

(
ÛT(t)|ψ(t)〉T

)
= Ĥ(t)

(
ÛT(t)|ψ(t)〉T

)
⇒ ih̄

([
∂tÛT(t)

]
|ψ(t)〉T + ÛT(t)∂t|ψ(t)〉T

)
= Ĥ(t)

(
ÛT(t)|ψ(t)〉T

)
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Schrödinger
Picture

Interaction
Picture

Heisenberg
Picture

Hamiltonian Ĥ = Ĥ0 + V̂(t) ĤI(t) = V̂I(t)
V̂I(t) = Û†

0 (t)V̂(t)Û0(t)
ĤH = 0

States ρ̂(t) = Û(t)ρ̂(0)Û†(t) ρ̂I(t) = ÛI(t)ρ̂I(0)Û†
I (t) ρ̂(t) = ρ̂(0)

Observables Ô(t) ÔI(t) = Û†
0 (t)Ô(t)Û0(t)

ÔH(t) = Û†(t)Ô(t)Û(t)
ÔH(t) = Û†

I (t)ÔI(t)ÛI(t)

Propagators ih̄∂tÛ(t) = Ĥ(t)Û(t)
ih̄∂tÛI(t) = ĤI(t)ÛI(t)

Û(t) = Û0(t)ÛI(t)
ÛH(t) = 1̂

ÛT(t) 1̂ Û0(t) ≡ exp
(
− iĤ0t

h̄

)
Û(t)

Table 2.1: Relations between Schödinger, Interaction, and Heisenberg pictures.

leading to

ih̄∂t|ψ(t)〉T =
(

Û†
T(t)Ĥ(t)ÛT(t)− ih̄Û†

T(t)
[
∂tÛT(t)

])︸ ︷︷ ︸
ĤI(t)

|ψ(t)〉T.

�

Note that by setting Ĥ(t) = Ĥ0 + V̂ and choosing the transformation ÛT(t) = Û0(t) ≡
exp

(
− iĤ0t

h̄

)
, we arrive at the interaction picture as discussed in section 2.2.4. This is due

to the fact that −ih̄Û†
T(t)∂tÛT(t) = −Ĥ0, while Û†

T(t)Ĥ(t)ÛT(t) = Ĥ0 + Û†
T(t)V̂ÛT(t).

We arrive at the Heisenberg picture by setting ÛT(t) to be the unitary evolution operator
from the Schödinger picture, generated by the full Hamlitonian Ĥ.

We summarize the resulting relationship between the three pictures in table 2.1.

2.2.6 Examples
In the following example, we examine the system that we considered in the introductory
paragraph of this chapter. A two level system is driven by an external field oscillating at
the frequency close to its transition.

� Example 2.4 — Periodic Driving of a Two-Level System. Consider a two-level system
with states |0〉 and |1〉. For this system, the Hamiltonian consists of two parts: a time-
independent part, Ĥ0, and a time-dependent driving term, V̂(t).

1. The Two-Level System:

Ĥ0 = h̄ω1|1〉〈1|

Where:
• ω1 is the energy difference between the two states.

2. The Driving Term: The system is subjected to an external drive given by:

V̂(t) = h̄Ω[|1〉〈0|+ |0〉〈1|]cos(ωdt)

Where:
• Ω is the Rabi frequency which determines the strength of the drive.
• ωd is the driving frequency.
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3. The Total Time-Dependent Hamiltonian:

Ĥ(t) = Ĥ0 + V̂(t)

4. Interaction Picture Hamiltonian: By moving to the interaction picture, the Hamiltonian
becomes:

ĤI(t) = Û†
0 (t)V̂(t)Û0(t)

With:

Û0(t) = exp[−iĤ0t/h̄] = |0〉〈0|+ e−iω1t|1〉〈1|

Though this is a perfectly valid frame to work in, we will find it even more convenient
to move into a slightly different frame, one that oscillates at the drive frequency.

5. Moving to the Frame of the Drive: We define a transformation

ÛT(t) = exp[−iωdt|1〉〈1|] = |0〉〈0|+ e−iωdt|1〉〈1|

that rotates with the drive. The new Hamiltonian ĤI = Û†
T(t)ĤÛT(t)− h̄ωd|1〉〈1|

results in:

ĤI = −h̄δ|1〉〈1|+ h̄Ω[eiωdt|1〉〈0|+ |0〉〈1|e−iωdt]cos(ωdt)

Where δ = ωd −ω1 is the detuning between the drive and the system.
6. Making the Rotating Wave Approximation (RWA): In the RWA, rapidly oscillating

terms are ignored. Observe the terms in ĤT that oscillate rapidly.

ĤI = −h̄δ|1〉〈1|+ h̄Ω
2

[|1〉〈0|+ |0〉〈1|] + h̄Ω
2

[
e2iωdt|1〉〈0|+ e−2iωdt|0〉〈1|

]
= ĤTI + ĤTD

where the time-independent (ĤTI) and time-dependent (ĤTD) parts of the transformed
Hamiltonian are defined as:

ĤTI ≡ −h̄δ|1〉〈1|+ h̄Ω
2

[|1〉〈0|+ |0〉〈1|]

ĤTD ≡
h̄Ω
2

[
e2iωdt|1〉〈0|+ e−2iωdt|0〉〈1|

]
We make the rotating wave approximation by noting that when Ω� ωd, ĤTD only
minutely affects the system’s evolution since the rapidly oscillating part averages
out. This gives us

ĤI ≈ ĤTI ≡ −h̄δ|1〉〈1|+ h̄Ω
2

[|1〉〈0|+ |0〉〈1|]

We see that by moving into the frame of the drive, we can eliminate rapidly oscillating
terms and obtain a time-independent Hamiltonian – a significant simplification of our
equations of motion. �

The two following examples require some familiarity with the Harmonic Oscillator. You
may wish to come back to these two after Chapter ??.

� Example 2.5 — Linear Driving of a Harmonic Oscillator. Consider a spring-block system
that is subject to an external driving force F(t). In quantum mechanics, our harmonic
oscillator will have a Hamiltonian, Ĥ0, and an external driving term, V̂.
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1. The Free Harmonic Oscillator:

Ĥ0 =
p̂2

2m
+

1
2

mω2
o x̂2

Where:
• p̂ is the momentum operator.
• m is the mass of the particle.
• ωo is the natural frequency of the oscillator.
• x̂ is the position operator.

2. The Driving Term: The system is driven by an external force which is periodic in
time:

V̂(t) = −F(t) · x̂ = 2Fω cos(ωdt)x̂

Where we chose F(t) = −2Fω cos(ωdt) with
• Fω is the amplitude of the external force.
• ωd is the driving frequency.
• The factor of 2 is for normalization convenience.

3. The Total Time-Dependent Hamiltonian:

Ĥ(t) = Ĥ0 + V̂(t)

4. Expression in terms of Creation and Annihilation Operators:
As shown in Chapter ??, it is often convenient to express the position and momentum
operators in terms of creation and annihilation operators â† and â defined as:

x̂ = xzpf(â† + â)

p̂ = ipzpf(â† − â)

Where:
• xzpf is the standard deviation of the oscillator’s position when in its ground

state; xzpf =
√

h̄/2mωo.
• pzpf is the standard deviation of the oscillator’s momentum when in its ground

state; pzpf =
√

h̄mωo/2.
Then for the quantum harmonic oscillator, we find4

Ĥ0 = h̄ωo â† â

V̂(t) = 2Fω cos(ωdt)xzpf(â† + â)

Using the identity cos(ωdt) = 1
2

(
eiωdt + e−iωdt), we express the driving term as:

V̂(t) = Fωxzpf(â† + â)(eiωdt + e−iωdt)

5. Going into the frame of the drive field: Our goal is to attempt to remove the time-
dependence in the equations above – this would greatly simplify their analysis. It
is generally not possible to find a time-independent description for a system that
contains a time-dependent force. But in the case of the harmonically driven oscillator,
we can succeed to within an approximation described below. First we move into a
rotating frame by choosing the correct transformation:

ÛT(t) = exp(−iωd â† ât).

4Actually Ĥ0 = h̄ωo(â† â + 1/2), but we drop the constant offset of h̄ωo/2 in the energy for simplicity.
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Notice, that this is slightly different than Û0 which we use to go the interaction
picture. Applying this transformation to our Hamiltonian, we find5:

ĤI(t) = Û†
T(t)Ĥ(t)ÛT(t)− ih̄Û†

T(t)∂tÛT(t)

which gives us

ĤI(t) = Ĥ0 − h̄ωd â† â + Fωxzpf(â†eiωdt + âe−iωdt)(eiωdt + e−iωdt)

.
Expanding the driving term in ĤT(t), we have:

Fωxzpf(â†eiωdt + âe−iωdt)(eiωdt + e−iωdt)

= Fωxzpf(â† + â) + Fωxzpf(â†e2iωdt + âe−2iωdt)

Now, splitting ĤI(t) into time-independent and time-dependent parts, we find:

ĤTI = Ĥ0 − h̄ωd â† â + Fωxzpf(â† + â)

ĤTD(t) = Fωxzpf(â†e2iωdt + âe2iωdt)

6. Making the rotating wave approximation (RWA): The crux of the RWA lies in
observing that certain terms in the Hamiltonian will oscillate rapidly, and under
some conditions will effectively average to zero over time and hence can be neglected.
Looking at ĤTD(t), we notice the terms are oscillating at twice the driving frequency.
On the other hand, the rest of the Hamiltonian in this picture is generating time
evolution at frequencies on the order of |ωd −ω0| and |Fωxzpf|. If 2ωd is much faster
than |ωd −ω0| and |Fωxzpf|, then its effect will be averaged out and we can ignore it.
This is called the RWA.
Within the RWA, the Hamiltonian is approximated as:

ĤI ≈ h̄(ωo −ωd)â† â + Fωxzpf(â† + â)

�

� Example 2.6 — Parametric Driving of a Harmonic Oscillator. Consider a parametric
oscillator where the oscillation frequency is modulated, for example, by changing the
spring constant periodically in time.

1. The Parametrically Driven Hamiltonian:

Ĥ(t) =
p̂2

2m
+

1
2

mω2
o(1 + ε(t))x̂2

ε(t) = ε0 cos(2ωdt)

Here:
• ε(t) represents the time-dependent modulation of the spring constant.
• ε0 is the amplitude of the modulation.
• 2ωd is the frequency of the parametric drive.

5We use the operator identity exp(−iφâ† â)â exp(iφâ† â) = eiφ â which is discussed in Chapter ??.
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2. Hamiltonian in terms of Creation and Annihilation Operators: Using the definitions
above for the Hamiltonian and the drive term, and the relation between the position
and momentum operators, and the creation and annihilation operators, we find:

Ĥ(t) =
p2

zp

2m
(â† − â)2 +

1
2

mω2
o(1 + ε(t))x2

zp(â + â†)2

= h̄ωo â† â +
1
4

h̄ωoε(t)(â + â†)2

= h̄ωo â† â +
1
4

h̄ωoε0 cos(2ωdt)(â + â†)2

= h̄ωo â† â +
1
8

h̄ωoε0(e2iωdt + e−2iωdt)(â + â†)2

Now we define β ≡ 1
8 ωoε0, and find:

Ĥ(t) = h̄ωo â† â + h̄β
(

e−2iωdt â†2 + e2iωdt â2
)
+ (other terms)

Here:
• β ≡ 1

8 ωoε0 is a parameter related to the amplitude of the parametric drive.
3. Transforming to a Rotating Frame of Reference:

We use a transformation ÛT(t) = exp
(
−iωd â† ât

)
, which puts us in the frame of

reference of the drive:

ĤI(t) = Û†
T(t)Ĥ(t)ÛT(t)− ih̄Û†

T(t)
dÛT(t)

dt
= h̄(ωo −ωd)â† â + h̄β

(
â†2 + â2

)
+ Û†

T(t)(other terms)ÛT(t)

4. Simplification to a Time-Independent Hamiltonian within RWA:
Note that in the interaction picture, if we drop the “other terms”, the Hamiltonian
becomes time-dependent. Dropping these other terms may be justified within the
rotating wave approximation resulting in:

ĤI ≈ h̄(ωo −ωd)â† â + h̄β(â†2 + â2)

�
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